BmREEPa Is a Novel Gene that Facilitates BmNPV Entry into Silkworm Cells
نویسندگان
چکیده
We previously established two silkworm cell lines, BmN-SWU1 and BmN-SWU2, from Bombyx mori ovaries. BmN-SWU1 cells are susceptible while BmN-SWU2 cells are highly resistant to BmNPV infection. Interestingly, we found that the entry of BmNPV into BmN-SWU2 cells was largely inhibited. To explore the mechanism of this inhibition, in this study we used isobaric tags for relative and absolute quantitation (iTRAQ)-based quantitative protein expression profiling and identified 629 differentially expressed proteins between the two cell lines. Among them, we identified a new membrane protein termed BmREEPa. The gene encoding BmREEPa transcribes two splice variants; a 573 bp long BmREEPa-L encoding a protein with 190 amino acids and a 501 bp long BmREEPa-S encoding a protein with 166 amino acids. BmREEPa contains a conserved TB2/DP, HVA22 domain and three transmembrane domains. It is localized in the plasma membrane with a cytoplasmic C-terminus and an extracellular N-terminus. We found that limiting the expression of BmREEPa in BmN-SWU1 cells inhibited BmNPV entry, whereas over-expression of BmREEPa in BmN-SWU2 cells promoted BmNPV entry. Our results also indicated that BmREEPa can interact with GP64, which is the key envelope fusion protein for BmNPV entry. Taken together, the findings of our study revealed that BmREEPa is required for BmNPV to gain entry into silkworm cells, and may provide insights for the identification of BmNPV receptors.
منابع مشابه
Gene transduction in mammalian cells using Bombyx mori nucleopolyhedrovirus assisted by glycoprotein 64 of Autographa californica multiple nucleopolyhedrovirus
Autographa californica multiple nucleopolyhedrovirus (AcMNPV), an alphabaculovirus, has been widely utilized for protein expression in not only insect cells but also mammalian cells. AcMNPV is closely related to Bombyx mori nucleopolyhedrovirus (BmNPV), and nucleotide sequences of AcMNPV genes have high similarity with those of BmNPV. However, the transduction of BmNPV into mammalian cells has ...
متن کاملA Hypothetical Model of Crossing Bombyx mori Nucleopolyhedrovirus through Its Host Midgut Physical Barrier
Bombyx mori nucleopolyhedrovirus (BmNPV) is a primary pathogen of silkworm (B. mori) that causes severe economic losses each year. However, the molecular mechanisms of silkworm-BmNPV interactions, especially the silkworm proteins that can interact with the virus, are still largely unknown. In this study, the total and membrane proteins of silkworm midguts were displayed using one- and two-dimen...
متن کاملGenome-Wide Analysis of Differentially Expressed microRNA in Bombyx mori Infected with Nucleopolyhedrosis Virus
Bombyx mori nucleopolyhedrosis virus (BmNPV) is a major pathogen that threatens the growth and sustainability of the sericulture industry. Since microRNAs (miRNAs) have been shown to play important roles in host-pathogen interactions, in this study we investigated the effects of BmNPV infection on silkworm microRNAs expression profile. To achieve this, we constructed and deep-sequenced two smal...
متن کاملResistance to BmNPV via Overexpression of an Exogenous Gene Controlled by an Inducible Promoter and Enhancer in Transgenic Silkworm, Bombyx mori
The hycu-ep32 gene of Hyphantria cunea NPV can inhibit Bombyx mori nucleopolyhedrovirus (BmNPV) multiplication in co-infected cells, but it is not known whether the overexpression of the hycu-ep32 gene has an antiviral effect in the silkworm, Bombyx mori. Thus, we constructed four transgenic vectors, which were under the control of the 39 K promoter of BmNPV (39 KP), Bombyx mori A4 promoter (A4...
متن کاملV-ATPase Is Involved in Silkworm Defense Response against Bombyx mori Nucleopolyhedrovirus
Silkworms are usually susceptible to the infection of Bombyx mori (B. mori) nucleopolyhedrovirus (BmNPV), which can cause significant economic loss. However, some silkworm strains are identified to be highly resistant to BmNPV. To explore the silkworm genes involved in this resistance in the present study, we performed comparative real-time PCR, ATPase assay, over-expression and sub-cellular lo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 10 شماره
صفحات -
تاریخ انتشار 2015